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1. Constructing a differential equation for the Tsunami wave 
In all those years, where I have been teaching the physics of waves, I have emphasized, that the 
propagation of a wave is not a transportation of matter, but rather a periodic propagation of energy 
and momentum. And almost each time the class has confronted me with the fact that sea waves 
break and subsequently rush on the shore.  
In these cases I normally choose the classic evasion technique, saying: Yes that is correct, but 
unfortunately it is far to complicated to comprehend at this level of education. True enough, if we 
are talking hydrodynamics, but if an audacious student asks: But do you understand it yourself?  
Then my answer has been evasive, in the sense that I merely explain that a rising water crest is 
created, because the dept of the water decreases.   
But this is just an phenomenological ascertainment, it is not an explanation of physics.  
 
When I have been seeking for an analytic treatment founded on theoretical physics I have only 
found some less conspicuous articles, so I decided to find out for myself. 
 
At the University of Copenhagen we were in 1967 taught hydrodynamic from the book by Arnold 
Sommerfeld: Mechanics of Deformable Bodies, from 1964, but without a thorough knowledge of 
vector analysis, that is, the operator’s of vector analysis grad, div and rot including the theorems of 
Stoke and Green, Sommerfeld’s book is not really applicable. 
 
In 2011 the “subject of the year” at the Danish gymnasium (senior high) was “catastrophes”, and 
many students chose to write about the Tsunami in 2004, and I was their physic teacher. 
 
I certainly searched for extern assistance, but the only thing, that was really tangible, was a remark 
in Sommerfelds book, accompanying two formulas for the velocity of propagation in deep water 
and in medium deep water. 
 

(1.1)       Deep water: 
k

gg
v 




2
  Medium deep water:   ghv   

 
h is the depth of water, and g is the gravitational acceleration and λ is the wavelength. 
 
In deep water the velocity of propagation is independent of the depth, but in medium water it is 
not, and that is the key to understand the physics of the tsunamis. 
The derivation of the formulas (1.1) is however far from simple. The derivations are postponed 
until section 2. 
 
One may obtain a phenomenological understanding of the creation of a tsunami, propagating 
towards lower water from the velocity formula.  Namely the back end of a wave packet will 
steadily run faster than the front end, because the velocity decreases with the water depth.  
In the long run the back of the wave packet will crawl up on the front of the wave, and create a 
higher wave crest. This happens continually and the result may become a wave crest which is 
rising and finally breaks before reaching the shore, flooding the surroundings of the coast line, that 
is, a tsunami. 
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To do a more formal analysis, it will be necessary 
with some simplifying assumptions.       
First we assume that the wave has a rectangular 
shape, where the bottom floats on the surface of 
the water. Further we assume that the water depth 
decreases linearly with distance from a reference 
point. At x = 0, the seabed is at h0 and at x it is  

tan0 xhh    

The velocities of the wave-packet (the box) are at the rear end and at the front end, v1 and v2 
respectively, where v1 > v2.  
Since the wave-packet (the box) holds the same amount of water when moving, but changing its 
shape, it follows that the area A of the two rectangles shown in the figure must be the same.  
 

A = yΔx = (Δx+dx)(y+dy),        which gives:        Δxdy + ydx =0 
 

Solved with respect to dy to give:    

(1.1)   dx
x

y
dy


          

 
For medium deep water, we have the formula:   
 

(1.2)  )tan( 0 xhgghv  . 

 
Because of the different velocities of the wave-packet at the rear and at the front, the wave-packet 
(the box) will be compressed an amount dx during the time dt. 
 
  vdtdtvvdx  )( 12  
 
When inserted in (1.1) gives: 
 

(1.3)  

dx

dv
y

dt

dy

dt
dx

dv
ydt

x

v
ydy

vdt
x

y
dx

x

y
dy

















 

 

Furthermore   
dx

dy
v

dt

dx

dx

dy

dt

dy
     

 
This leads to the wanted differential equation.    
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(1.4)  
dx

dv

v

y

dx

dy
  

 
Substituting:   

)tan( 0 xhgv      and      



tan2

tan

0 xh

g

dx

dv


  

 
We finally arrive at a differential equation, which determine how the height of the wave crest 
depends on the distance to the shore.  
 

(1.5) 






tan

tan

tan

tan

0
2
1

0
2
1

xh

dx

y

dy

xh

y

dx

dy







    

 
The last differential equation can then be integrated. 
 

(1.6)    xy
y

y

y

x

xhy
xh

dx

y

dy
002

1

0 0
2
1 )tanln(ln

tan

tan
0

0








   

 
When the equation is solved for y it yields: 
           

(1.7)  
tan0

0
0 xh

h
yy


  

 
Even if we have used a highly simplified model, the solution reflects the behaviour of a huge wave 
approaching the shore.  
The wave crest becomes infinite, when the depth approaches zero, but this is a mathematical fact, 
not a physical one. 
One could easily plot y, the height of the wave crest, as a function of the distance to the shore, but 
it is more illustrative to plot a wave-packet rolling in towards the shore. 
 
A harmonic wave can be written (as the real part of) )(),( kxtietx    
Integrating over the wave number  /2k  one obtains a wave-packet.  
 

(1.8) 
ix

kxikx
e

ix

e
edkee ti

ikx
tiikxti











)sin()cos(   ,  

Which after rewriting using trigonometric formulas:  
x

tkx )sin(
Re

 
   

At t = 0 the shape of the wave-packet is:  y0
x

kxsin
, and the shape in x0, may be found multiplying 

the height of the wave at x0.   

Since 01
sin

 xfor
x

x
 the maximum value of the wave packet is y(x). 

We the multiply (1.8) by the height of the wave crest y, we will get a model that illustrates what 
happens, when a Tsunami wave approaches the shore. 
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 (1.9)  
0

0 )(sin
)(

xx

xxk
xy




  

 
    The figure shows a wave approaching the
    shore. The rising wave is shown at various 
    instants from 1.5 km from the shore until it
    reaches the shore, where it goes to infinity, 

in accordance with (1.9). 
Although hydrodynamics is highly complex, 
the simple model developed above gives at 
least a qualitative answer on the dynamics 
of a tsunami. 
 
 

 

2. The velocity of propagation in deep and medium deep water 
 The derivation of the two formulas for the velocity of propagation of a wave, require vector 
analysis, and we shall recall the notation: 
 

),,(
zyx 









    Gradient of a scalar field φ. 

z

v

y

v

x

v
v zyx
















  Divergence of a vector field v. 

  
2

2

2

2

2

2
2

zyx 











     The Laplace operator 

),,(
y
v

x

v

x
v

z
v

z

v

y
v

v xyzxyz

























        The operator rot. 

 

From the vector analysis we know that for a rotational free vector field i.e. 0


v , it is possible 
to define a potential from which the vector field is its gradient. Applying this to the velocity vector 
field v in a two dimensional field of flowing liquid without turbulence, we have   
 

(2.1) ),(0
yx

vvv









 

If the velocity field is also divergence free: ( 0


v ), which means that the fluid is 
incompressible, then the potential will satisfy the Laplace equation, since:   
 




00v 02   
 

(2.2)            0
2

2

2

2









yx
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For any analytic function: ),(),()()( yxiyxiyxfzf  , both the real and the imaginary 
part are solutions to the Laplace equation. This follows, because they satisfy the Cauchy-Riemann 
differential equations: 
 

(2.3)  
xy

and
yx 














 

Using (2.3) 

(2.4)      0
22

2

2

2

2
2 

















xyyxyx

   

   

0
22

2

2

2

2
2 

















xyyxyx

 

If 


v  , then Φ(x,y)= Φ0, will represent curves with the same velocity, and through the  
Cauchy-Riemann equation, it follows that:  
 

 













yx
,  is orthogonal to 














yx
, ,  

 
So the curves Ψ(x,y) = Ψ 0 and  Φ(x,y)= Φ0, will be orthogonal curve systems, and for that reason 
Ψ(x,y)  will represent the streamlines. 
 
The most general velocity potential, that represents the propagation of a wave, can be written: 
 
(2.5)  )()( kykytkxi BeAee     
 
Where we fix y = 0 at the surface.  
 
The boundary condition at the bottom (y = -h), is that the vertical velocity is zero. ( vy =0   or 

using the potential:  0| 



 hyy
). 

Inserted in (2.5) it leads to the equation: 
 

    0 khkh BeAe . 
 
Introducing the constant C by 
 

  khkhkhkh CeBogCeAthatsoBeAeC   2
1

2
1

2
1 ,  

 
the potential takes the form: 
 
(2.6) ))(cosh()( )()()(

2
1)( hykCeeeCe tkxiyhkyhktkxi     

 
The derivation of the expression for the velocity field, takes its starting point in the Navier-Stokes 
equation. 
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(2.7)  




 Fp
dt

vd  

If the fluid is rotational free and divergence free i.e. 00 


vandv , Then (using vector 
analysis) (2.7) can be reduced to the following form: 
 

(2.8)  








 Fpv
t

v 2
2
1      

 
If F is a conservative force (the gravitational force) then F can be expressed as the gradient of a 
potential U.   

(2.9)   UF


  
 

Finally inventing the velocity potential 


v , and moving the gradient outside a parenthesis 
we get Bernoulli’s law. 

(2.10)  0))(( 2
2
1 







Up
t

    

For moderate velocities, we may discard the term 2)( 


 and if we preliminary are interested only 
in the surface profile of the wave, we may put the pressure p = 0. 
  
Hereafter the equation becomes substantially simplified . 
 

(2.11)  constU
t





   

 
The constant may in principle depend on time, but for a non forced periodic movement, one can 
show that the only possibility is that it is zero. At the same time U = ρgy, where ρ is the density of 
water and g is the gravitational acceleration. Inserting this in (2.11) gives: 
 

(2.12)  gy
t





 

 
If we consider a progressive harmonic wave, the surface profile y is of the form: 
 
(2.13)  )(),( tkxiaetxuy  , 
 
Where a in general is a complex number possibly containing a phase.  
 

Using (2.12) gy
t





  with (2.6)  ))(cosh()( hykCe tkxi    and (2.13) we find: 

 
(2.14) aghykCiagehykCei tkxitkxi   ))(cosh())(cosh( )()(     
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To determine the velocity of propagation of the wave at the surface, we need yet another 
condition, which we choose that the velocity Vn of a point at the surface, normal to the surface 
must be the same as the corresponding velocity of the fluid element vn , at the same point.       

Expressed by the velocity potential: 
n

vn 


  .   

We can obtain the velocity on the surface in the same point Vn as the velocity in the wave profiles 

up and down movements: 
t

u
Vn 


   , where u(x,t) = aei(kx- ωt ). 

 
If the wavelength, is substantially larger than the amplitude, we may replace  
 

n
vn 


       by    

y
vn 


  

 
Applying the last expression for the surface profile: u(x,t)=cei(kx- ωt ) , and the velocity potential 

))(cosh()( hykCe tkxi   , dropping the factor )( tkxie   it gives: 
 

(2.15)  







t

u

y
          aikhkykC  )sinh(  

 
If we put y =0 (close to the surface) the two equations (2.14) aghykCi  ))(cosh(   and 
(2.15) aikhkykC  )sinh( become: 
 
(2.16)   agkhCi  )cosh(  and  aikhkC )sinh( : 
 

Thus    )tanh(
)sinh()cosh( 2

2
2 kh

k

g

k
v

khk

i

khi

g

a

C








 

And indeed. 

(2.17)  )tanh(kh
k

g

k
v 


 

 
We shall then look into two limiting cases:  
 
Medium deep water: khkhkh  )tanh(1   
Deep water:  1)tanh(1  khkh  
 
This gives the velocities:  

(2.18)         Deep water:     
k

g
v          and medium deep water:   ghv   

As stated in the beginning. 
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3. Estimating the destructive force of a Tsunami 
This section does not pretend to be a credible estimate of the destructive effect of a Tsunami, 
corresponding to a certain earthquake in a certain depth at a certain distance from shore, (which is 
probably impossible), it is only an attempt to give a qualitative understanding of the phenomena. 
 

If an earthquake triggers a power P measured in 
Watt along the axis of a cylinder, with radius r and 
height h, then the radial intensity I(r) measured in 
W/m2 , at the distance r from the axis, will be the 
power divided by the area of the cylinder. 
 

(3.1)           
rh

P
rI

2
)(   

 
We shall the try to estimate the intensity of a 
tsunami, which is triggered at a distance of 2000 
km from the earthquake. 

    
 
But first, we shall estimate the power that is triggered by a lift of the seabed, as a consequence of 
an earthquake. We shall do some prerequisites more or less at random, and the formulas derived 
may be used with other initial conditions. 
 
Consequently we suppose that the seabed is lifted ∆h = 1 m, at a circular area with r = 10 km. 
We put the depth at that place to h = 3 km. This will result in an increase in energy 
 
(3.2)  hgVhmgE waterwater         

 
The volume of water is hrVwater

2 . If the numbers above are inserted, the energy released is 

 
(3.3)  E  9.3 1015 J 
 
If the duration of the earthquake is ∆t =5 min = 300 s, it will correspond to a released power: 
 

(3.4)  
t

E
P




  = 3.1 1013 W 

 
We presume that the tsunami propagates from a depth of 100 m to the surface, and we 
subsequently calculate the intensity at a distance 2000 km from the epicentre. 
  

(3.5) 
rh

P
rI

2
)(         22

6

13

/6.24/
1001022

101,3
)2000( mkWmkWkmI 







 

 
In deep water the velocity is dependent on the wavelength, but we don’t know the wavelength. 
When the tsunami approaches the shore however, we may use the formula for the velocity in 

medium deep water: ghv  .  
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At a depth at 3.0 km it gives 170 m/s, and at a depth 10 m it is about 10 m/s. 
 

The Power of a force, acting on a body with velocity v is: vFP

  

It then follows that the Intensity = Power/area is equal to the pressure times the velocity: vpI   
And if we assume that the tsunami moves with velocity 10 m/s when it reaches the shore, this will 
trigger a pressure = force/m2 amounting to: 
 

(3.6)  2
2

/5.2
/10

/6.24
mkN

sm

mkW

v

I
p   

 
Which corresponds to a weight of 250 kg per m2, being absolutely terrifying. 
 
As mentioned above, the data are chosen much at random, but the calculation may be carried out 
with other data giving other results. However, when you look at a movie, observing the 
devastating force of a tsunami, the values obtained above do not seem unreasonable. 
And now we understand better why!  
 
 


